import os import re from tqdm import tqdm import torch from transformers import AutoTokenizer, AutoModel, AutoConfig from transformers.generation.logits_process import LogitsProcessor from transformers.generation.utils import LogitsProcessorList from evaluators.evaluator import Evaluator class ChatGLMMixin: def __init__(self): self.tokenizer = None self.model = None self.model_name = None self.k = None self.choices = None self.finetune_name = None def eval_subject(self, subject_name, test_df, dev_df=None, few_shot=False, cot=False, save_result_dir=None): correct_num = 0 result = [] score = [] answer_list = [] if few_shot: history = self.generate_few_shot_prompt(subject_name, dev_df, cot=cot) else: history = self.generate_zero_shot_prompt(is_choice_question=True) answers = list(test_df['answer']) for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)): question = self.format_example(row, include_answer=False, cot=cot) history_tmp = history.copy() if few_shot: response, _ = self.model.chat(self.tokenizer, question, max_length=2000, do_sample=False, history=history_tmp) response = response.strip() ans, direct_extract = self.extract_cot_answer(row, response) else: # zero-shot by extracting answer from distribution response, _ = self.model.chat(self.tokenizer, question, max_length=2000, do_sample=False, history=history_tmp) response = response.strip() ans, direct_extract = self.extract_cot_answer(row, response) if ans == answers[row_index]: correct_num += 1 correct = 1 else: correct = 0 if save_result_dir: result.append(response) score.append(correct) answer_list.append(ans) correct_ratio = 100 * correct_num / len(answers) if save_result_dir: test_df['model_output'] = result test_df['correctness'] = score test_df['model_answer'] = answer_list result_file_name = f'{subject_name}_{correct_ratio}_test.csv' if few_shot: result_file_name = f'{subject_name}_{correct_ratio}_few_shot_test.csv' test_df.to_csv(os.path.join(save_result_dir, result_file_name)) return correct_ratio def eval_qa(self, subject_name, qa_df, save_result_dir=None): history = self.generate_zero_shot_prompt(is_choice_question=False) for row_index, row in tqdm(qa_df.iterrows(), total=len(qa_df)): question = row['question'] history_tmp = history.copy() response, _ = self.model.chat(self.tokenizer, question, max_length=2000, do_sample=False, history=history_tmp) response = response.strip() qa_df.loc[row_index, 'model_output'] = response # current_length = 0 # response = "" # for resp, _ in self.model.stream_chat(self.tokenizer, question, max_length=300, # do_sample=False, history=history): # print(resp[current_length:], end="", flush=True) # current_length = len(resp) # response = resp # print('') if save_result_dir and self.finetune_name is not None: result_file_name = f'{subject_name}_qa_test_result.csv' qa_df.to_csv(os.path.join(save_result_dir, result_file_name)) return qa_df def generate_few_shot_prompt(self, subject, dev_df, cot=False): message = [] k = self.k if self.k == -1: k = dev_df.shape[0] init_example = self.format_example(dev_df.iloc[0, :], cot=cot, add_prompt=f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n") if isinstance(init_example, list): message.extend(init_example) else: message.append(init_example) for i in range(1, k): example = self.format_example(dev_df.iloc[i, :], cot=cot) if isinstance(example, list): message.extend(example) else: message.append(example) return message def generate_zero_shot_prompt(self, is_choice_question=True): if self.model_name == 'chatglm3' and is_choice_question: return [{'role': 'user', 'content': '接下来会提供给你一些选择题,请选出正确的答案,给出正确的选项即可。'}, {'role': 'assistant', 'content': '好的,我会尽力解答。'}] elif self.model_name == 'chatglm3' and not is_choice_question: return [{'role': 'user', 'content': '接下来会给你一些一些汽车领域相关问题,请回答。'}, {'role': 'assistant', 'content': '好的,我会尽力解答。'}] else: return [] def format_example(self, line, include_answer=True, cot=False, add_prompt=''): example = add_prompt + line['question'] # print(example) for choice in self.choices: example += f'\n{choice}. {line[f"{choice}"]}' example += '\n答案:' if include_answer: if cot: ans = "让我们一步一步思考,\n" + line["explanation"] + f"\n所以答案是{line['answer']}。" else: ans = line["answer"] if self.model_name == 'chatglm3': m = [{ 'role': 'user', 'content': example }, { 'role': 'assistant', 'content': ans }] else: m = (example, ans) return m return example def extract_cot_answer(self, line, gen_ans): m = re.findall(r'所以答案是(.+?)。', gen_ans, re.M) if len(m) > 0 and m[-1] in self.choices: return m[-1], True answer_patterns = [ r'([ABCD])是正确的', r'选项([ABCD])正确', r'答案为([ABCD])', r'答案是([ABCD])', r'答案([ABCD])', r'选择([ABCD])', r'答案:([ABCD])', r'选择答案([ABCD])', r'正确答案是([ABCD])' ] # RE extraction for answer_pattern in answer_patterns: m = re.search(answer_pattern, gen_ans, re.M) if m: answer = m.group(1) return answer, False # only containing one choice-character m = re.findall(r'[ABCD]', gen_ans, re.M) if len(m) == 1: answer = m[0] return answer, False answer_word_counter = 0 # only containing one choice-context for c in self.choices: if str(line[f'{c}']) in gen_ans: answer = c answer_word_counter += 1 if answer_word_counter == 1: return answer, False return '-', False