import pandas as pd # 读取两个csv文件 human_score_df = pd.read_csv('logs/other/human.csv') machine_score_df = pd.read_csv('logs/other/result_diff_test_score_53.84256314043283.csv') result_df = pd.DataFrame(columns=['question', 'answer', 'predict_finetune', 'predict_origin', 'acc_finetune', 'human_acc_finetune', 'acc_origin', 'human_acc_origin', 'fluency_finetune', 'human_fluency_finetune', 'diff_score', 'human_diff_score']) result_df_row_index = 0 for row_index, row in machine_score_df.iterrows(): acc_finetune_diff = row['acc_finetune'] - human_score_df.loc[row_index, '准确度(微调后'] acc_origin_diff = row['acc_origin'] - human_score_df.loc[row_index, '准确度(微调前'] fluency_finetune_diff = row['fluency_finetune'] - human_score_df.loc[row_index, '流畅度(微调后'] diff_score_diff = row['diff_score'] - human_score_df.loc[row_index, '是否超过原模型'] print("准确度(微调后)差值:", abs(acc_finetune_diff),end=' ') print("准确度(微调前)差值:", abs(acc_origin_diff),end=' ') print("流畅度(微调后)差值:", abs(fluency_finetune_diff),end=' ') print("是否超过原模型差值:", abs(diff_score_diff)) if abs(acc_finetune_diff) >= 2: result_df.loc[result_df_row_index, 'question'] = machine_score_df.loc[row_index, 'question'] result_df.loc[result_df_row_index, 'answer'] = machine_score_df.loc[row_index, 'answer'] result_df.loc[result_df_row_index, 'predict_finetune'] = machine_score_df.loc[row_index, 'predict_finetune'] result_df.loc[result_df_row_index, 'predict_origin'] = machine_score_df.loc[row_index, 'predict_origin'] result_df.loc[result_df_row_index, 'acc_finetune'] = machine_score_df.loc[row_index, 'acc_finetune'] result_df.loc[result_df_row_index, 'human_acc_finetune'] = human_score_df.loc[row_index, '准确度(微调后'] result_df.loc[result_df_row_index, 'acc_origin'] = machine_score_df.loc[row_index, 'acc_origin'] result_df.loc[result_df_row_index, 'human_acc_origin'] = human_score_df.loc[row_index, '准确度(微调前'] result_df.loc[result_df_row_index, 'fluency_finetune'] = machine_score_df.loc[row_index, 'fluency_finetune'] result_df.loc[result_df_row_index, 'human_fluency_finetune'] = human_score_df.loc[row_index, '流畅度(微调后'] result_df.loc[result_df_row_index, 'diff_score'] = machine_score_df.loc[row_index, 'diff_score'] result_df.loc[result_df_row_index, 'human_diff_score'] = human_score_df.loc[row_index, '是否超过原模型'] result_df_row_index += 1 result_df.to_csv('logs/other/diff.csv', index=False) # 信息的准确性应当被首要考虑,多余的未知真假的信息不应该带来加分。