You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

174 lines
7.1 KiB
Python

import os
import re
from tqdm import tqdm
class ChatGLMMixin:
def __init__(self):
self.tokenizer = None
self.model = None
self.model_name = None
self.k = None
self.choices = None
self.finetune_name = None
def eval_subject(self, subject_name, test_df, dev_df=None, few_shot=False, cot=False, save_result_dir=None):
correct_num = 0
result = []
score = []
answer_list = []
if few_shot:
history = self.generate_few_shot_prompt(subject_name, dev_df, cot=cot)
else:
history = self.generate_zero_shot_prompt(is_choice_question=True)
answers = list(test_df['answer'])
for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row, include_answer=False, cot=cot)
history_tmp = history.copy()
if few_shot:
response, _ = self.model.chat(self.tokenizer, question, max_length=2000,
do_sample=False, history=history_tmp)
response = response.strip()
ans, direct_extract = self.extract_cot_answer(row, response)
else: # zero-shot by extracting answer from distribution
response, _ = self.model.chat(self.tokenizer, question, max_length=2000,
do_sample=False, history=history_tmp)
response = response.strip()
ans, direct_extract = self.extract_cot_answer(row, response)
if ans == answers[row_index]:
correct_num += 1
correct = 1
else:
correct = 0
if save_result_dir:
result.append(response)
score.append(correct)
answer_list.append(ans)
correct_ratio = 100 * correct_num / len(answers)
if save_result_dir:
test_df['model_output'] = result
test_df['correctness'] = score
test_df['model_answer'] = answer_list
result_file_name = f'{subject_name}_{correct_ratio}_test.csv'
if few_shot:
result_file_name = f'{subject_name}_{correct_ratio}_few_shot_test.csv'
test_df.to_csv(os.path.join(save_result_dir, result_file_name))
return correct_ratio
def eval_qa(self, subject_name, qa_df, save_result_dir=None):
history = self.generate_zero_shot_prompt(is_choice_question=False)
for row_index, row in tqdm(qa_df.iterrows(), total=len(qa_df)):
question = row['question']
history_tmp = history.copy()
response, _ = self.model.chat(self.tokenizer, question, max_length=2000,
do_sample=False, history=history_tmp)
response = response.strip()
qa_df.loc[row_index, 'model_output'] = response
# current_length = 0
# response = ""
# for resp, _ in self.model.stream_chat(self.tokenizer, question, max_length=300,
# do_sample=False, history=history):
# print(resp[current_length:], end="", flush=True)
# current_length = len(resp)
# response = resp
# print('')
if save_result_dir and self.finetune_name is not None:
result_file_name = f'{subject_name}_qa_test_result.csv'
qa_df.to_csv(os.path.join(save_result_dir, result_file_name))
return qa_df
def generate_few_shot_prompt(self, subject, dev_df, cot=False):
message = []
k = self.k
if self.k == -1:
k = dev_df.shape[0]
init_example = self.format_example(dev_df.iloc[0, :], cot=cot,
add_prompt=f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n")
if isinstance(init_example, list):
message.extend(init_example)
else:
message.append(init_example)
for i in range(1, k):
example = self.format_example(dev_df.iloc[i, :], cot=cot)
if isinstance(example, list):
message.extend(example)
else:
message.append(example)
return message
def generate_zero_shot_prompt(self, is_choice_question=True):
if self.model_name == 'chatglm3' and is_choice_question:
return [{'role': 'user',
'content': '接下来会提供给你一些选择题,请选出正确的答案,给出正确的选项即可。'},
{'role': 'assistant',
'content': '好的,我会尽力解答。'}]
elif self.model_name == 'chatglm3' and not is_choice_question:
return [{'role': 'user',
'content': '接下来会给你一些一些汽车领域相关问题,请回答。'},
{'role': 'assistant',
'content': '好的,我会尽力解答。'}]
else:
return []
def format_example(self, line, include_answer=True, cot=False, add_prompt=''):
example = add_prompt + line['question']
# print(example)
for choice in self.choices:
example += f'\n{choice}. {line[f"{choice}"]}'
example += '\n答案:'
if include_answer:
if cot:
ans = "让我们一步一步思考,\n" + line["explanation"] + f"\n所以答案是{line['answer']}"
else:
ans = line["answer"]
if self.model_name == 'chatglm3':
m = [{
'role': 'user',
'content': example
}, {
'role': 'assistant',
'content': ans
}]
else:
m = (example, ans)
return m
return example
def extract_cot_answer(self, line, gen_ans):
m = re.findall(r'所以答案是(.+?)。', gen_ans, re.M)
if len(m) > 0 and m[-1] in self.choices:
return m[-1], True
answer_patterns = [
r'([ABCD])是正确的',
r'选项([ABCD])正确',
r'答案为([ABCD])',
r'答案是([ABCD])',
r'答案([ABCD])',
r'选择([ABCD])',
r'答案:([ABCD])',
r'选择答案([ABCD])',
r'正确答案是([ABCD])'
]
# RE extraction
for answer_pattern in answer_patterns:
m = re.search(answer_pattern, gen_ans, re.M)
if m:
answer = m.group(1)
return answer, False
# only containing one choice-character
m = re.findall(r'[ABCD]', gen_ans, re.M)
if len(m) == 1:
answer = m[0]
return answer, False
answer_word_counter = 0
# only containing one choice-context
for c in self.choices:
if str(line[f'{c}']) in gen_ans:
answer = c
answer_word_counter += 1
if answer_word_counter == 1:
return answer, False
return '-', False