You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.8 KiB
Python
156 lines
6.8 KiB
Python
10 months ago
|
import os
|
||
|
import re
|
||
|
from tqdm import tqdm
|
||
|
import torch
|
||
|
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
||
|
from transformers.generation.logits_process import LogitsProcessor
|
||
|
from transformers.generation.utils import LogitsProcessorList
|
||
|
from evaluators.evaluator import Evaluator
|
||
|
from peft import PeftModel
|
||
|
|
||
|
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||
|
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||
|
scores.zero_()
|
||
|
scores[..., 5] = 5e4
|
||
|
return scores
|
||
|
|
||
|
class ChatGLM_Evaluator(Evaluator):
|
||
|
def __init__(self, choices, k, model_name, device, finetune=None):
|
||
|
super(ChatGLM_Evaluator, self).__init__(choices, model_name, k)
|
||
|
# try adding 'mirror="tuna"' and 'resume_download=True' if facing the 'read timed out' problem
|
||
|
# or directly clone the model
|
||
|
self.tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, mirror="tuna")
|
||
|
self.model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, mirror="tuna", resume_download=True).half().to(device)
|
||
|
if finetune:
|
||
|
peft_model_id = "lora/" + finetune
|
||
|
self.model = PeftModel.from_pretrained(self.model, peft_model_id)
|
||
|
print("Model loaded! use GLM2" + finetune)
|
||
|
else:
|
||
|
print("Model loaded!(GLM2)")
|
||
|
# self.model = self.model.eval()
|
||
|
|
||
|
def eval_subject(self, subject_name, test_df, dev_df=None, few_shot=False, cot=False, save_result_dir=None):
|
||
|
correct_num = 0
|
||
|
if save_result_dir:
|
||
|
if few_shot:
|
||
|
result = []
|
||
|
score = []
|
||
|
if few_shot:
|
||
|
history = self.generate_few_shot_prompt(subject_name, dev_df, cot=cot)
|
||
|
else:
|
||
|
history = []
|
||
|
answers = list(test_df['answer'])
|
||
|
for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
||
|
question = self.format_example(row, include_answer=False, cot=cot)
|
||
|
if few_shot:
|
||
|
response, _ = self.model.chat(self.tokenizer, question, do_sample=False, history=history)
|
||
|
response = response.strip()
|
||
|
# For ChatGLM, we use answer extraction in answer-only mode too.
|
||
|
ans, direct_extract = self.extract_cot_answer(row, response)
|
||
|
else: # zero-shot by extracting answer from distribution
|
||
|
ans = self.generate_dist(self.model, self.tokenizer, question, do_sample=False, max_length=2048, history=history)
|
||
|
if ans == answers[row_index]:
|
||
|
correct_num += 1
|
||
|
correct = 1
|
||
|
else:
|
||
|
correct = 0
|
||
|
if save_result_dir:
|
||
|
if few_shot:
|
||
|
result.append(response)
|
||
|
score.append(correct)
|
||
|
correct_ratio = 100*correct_num/len(answers)
|
||
|
|
||
|
if save_result_dir:
|
||
|
if few_shot:
|
||
|
test_df['model_output'] = result
|
||
|
test_df['correctness'] = score
|
||
|
test_df.to_csv(os.path.join(save_result_dir, f'{subject_name}_{correct_ratio}_test.csv'))
|
||
|
|
||
|
return correct_ratio
|
||
|
|
||
|
def generate_few_shot_prompt(self, subject, dev_df, cot=False):
|
||
|
message = []
|
||
|
k = self.k
|
||
|
if self.k == -1:
|
||
|
k = dev_df.shape[0]
|
||
|
message.append(self.format_example(dev_df.iloc[0, :], cot=cot, add_prompt=f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n"))
|
||
|
for i in range(1, k):
|
||
|
message.append(self.format_example(dev_df.iloc[i, :], cot=cot))
|
||
|
return message
|
||
|
|
||
|
def format_example(self, line, include_answer=True, cot=False, add_prompt=''):
|
||
|
example = add_prompt + line['question']
|
||
|
# print(example)
|
||
|
for choice in self.choices:
|
||
|
example += f'\n{choice}. {line[f"{choice}"]}'
|
||
|
example += '\n答案:'
|
||
|
if include_answer:
|
||
|
if cot:
|
||
|
ans = "让我们一步一步思考,\n" + line["explanation"] + f"\n所以答案是{line['answer']}。"
|
||
|
else:
|
||
|
ans = line["answer"]
|
||
|
m = (example, ans)
|
||
|
return m
|
||
|
return example
|
||
|
|
||
|
def extract_cot_answer(self, line, gen_ans):
|
||
|
m = re.findall(r'所以答案是(.+?)。', gen_ans, re.M)
|
||
|
if len(m) > 0 and m[-1] in self.choices:
|
||
|
return m[-1], True
|
||
|
answer_patterns = [
|
||
|
r'([ABCD])是正确的',
|
||
|
r'选项([ABCD])正确',
|
||
|
r'答案为([ABCD])',
|
||
|
r'答案是([ABCD])',
|
||
|
r'答案([ABCD])',
|
||
|
r'选择([ABCD])',
|
||
|
r'答案:([ABCD])',
|
||
|
r'选择答案([ABCD])'
|
||
|
]
|
||
|
# RE extraction
|
||
|
for answer_pattern in answer_patterns:
|
||
|
m = re.search(answer_pattern, gen_ans, re.M)
|
||
|
if m:
|
||
|
answer = m.group(1)
|
||
|
return answer, False
|
||
|
# only containing one choice-character
|
||
|
m = re.findall(r'[ABCD]', gen_ans, re.M)
|
||
|
if len(m) == 1:
|
||
|
answer = m[0]
|
||
|
return answer, False
|
||
|
answer_word_counter = 0
|
||
|
# only containing one choice-context
|
||
|
for c in self.choices:
|
||
|
if str(line[f'{c}']) in gen_ans:
|
||
|
answer = c
|
||
|
answer_word_counter += 1
|
||
|
if answer_word_counter == 1:
|
||
|
return answer, False
|
||
|
return '-', False
|
||
|
|
||
|
def generate_dist(self, model, tokenizer, query, history, num_beams=1, max_length=2048,
|
||
|
do_sample=False, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
||
|
if history is None:
|
||
|
history = []
|
||
|
if logits_processor is None:
|
||
|
logits_processor = LogitsProcessorList()
|
||
|
logits_processor.append(InvalidScoreLogitsProcessor())
|
||
|
gen_kwargs = {"num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, "max_length": 2048,
|
||
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
||
|
if not history:
|
||
|
prompt = query
|
||
|
else:
|
||
|
prompt = ""
|
||
|
for i, (old_query, response) in enumerate(history):
|
||
|
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
||
|
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
||
|
inputs = tokenizer([prompt], return_tensors="pt")
|
||
|
inputs = inputs.to(model.device)
|
||
|
outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, **gen_kwargs)
|
||
|
|
||
|
score = outputs.scores[0][0].tolist()
|
||
|
choice_score = [score[167], score[333], score[251], score[416]]
|
||
|
ranked_index = [index for index, value in sorted(list(enumerate(choice_score)), key=lambda x:x[1], reverse=True)]
|
||
|
return self.choices[ranked_index[0]]
|